【变式训练1】 (1)(2013·广东高考改编)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是________.
(2)(2014·苏州质检)已知椭圆的方程是+=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则ABF2的周长为________.
[解析] (1)右焦点F(1,0),则椭圆的焦点在x轴上;c=1.
又离心率为=,故a=2,b2=a2-c2=4-1=3,
故椭圆的方程为+=1.
(2)a>5,椭圆的焦点在x轴上,
|F1F2|=8,c=4,
a2=25+c2=41,则a=.
由椭圆定义,|AF1|+|AF2|=|BF2|+|BF1|=2a,
ABF2的周长为4a=4.
[答案] (1)+=1 (2)4考向2 椭圆的几何性质
【典例2】 (1)(2013·江苏高考)在平面直角坐标系xOy中,椭圆C的标准方程为+=1(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B.设原点到直线BF的距离为d1,F到l的距离为d2,若d2=d1,则椭圆C的离心率为________.
(2)(2014·扬州质检)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,PF1F2=30°,则椭圆的离心率为________.
[解析] (1)依题意,d2=-c=.又BF==a,所以d1=.由已知可得=·,所以c2=ab,即6c4=a2(a2-c2),整理可得a2=3c2,所以离心率e==.
(2)在三角形PF1F2中,由正弦定理得
sinPF2F1=1,即PF2F1=,
设|PF2|=1,则|PF1|=2,|F2F1|=,
离心率e==.
[答案] (1) (2),【规律方法】
1.椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.
2.椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:
(1)求出a,c,代入公式e=;
(2)只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).
重要提醒!!内容中联系方式并非本站联系方式,报名咨询的学员请与下面最新联系方式联系我们咨询报名-以免损失!
>>长期招聘兼职招生代理人员,项目合作,团报优惠咨询,有意者请联系我们 >>咨询:13312524700(可加微信)。
云南地州中心:◆咨询电话:0871-65385921、17787865775 冯老师、 王老师(微信报名:17787865775)
总部报名地址: ◆昆明市-五华区教场东路莲花财富中心10楼;网课试听:ke.xuekaocn.cn
地州分校: 大理分校 丽江分校 迪庆分校 怒江分校 红河分校 临沧分校 玉溪分校 文山分校 保山分校 德宏分校 昭通分校 普洱分校 版纳分校 【各地州学员请加老师微信咨询报名,电话(微信):133-1252-4700】;【2021年云南省成人高考>>立即报名】
职业技能考证:心理咨询师、健康管理师、茶艺师等更多>◆咨询电话:133 1252 4700(微信)
公考培训咨询:◆国考云南省考公务员/事业单位面授培训,咨询电话:133 1252 4700 (微信)